Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigation of plasmonic resonances in the two-dimensional electron gas of an InGaAs/InP high electron mobility transistor

Identifieur interne : 002B16 ( Main/Repository ); précédent : 002B15; suivant : 002B17

Investigation of plasmonic resonances in the two-dimensional electron gas of an InGaAs/InP high electron mobility transistor

Auteurs : RBID : Pascal:11-0452828

Descripteurs français

English descriptors

Abstract

The observation of THz regime transmission resonances in an InGaAs/InP high electron mobility transistor (HEMT) can be attributed to excitation of plasmons in its two-dimensional electron gas (2DEG). Properties of grating-based, gate-voltage tunable resonances are shown to be adequately modeled using commercial finite element method (FEM) software when the HEMT layer structure, gate geometry and sheet charge concentration are taken into account. The FEM results are shown to produce results consistent with standard analytical theories in the 10-100 cm-1 wavenumber range. An original analytic formula presented here describes how the plasmonic resonance may change in the presence of a virtual gate, or region of relatively high free charge carriers that lies in the HEMT between the physical grating gate and the 2DEG. The virtual gate and corresponding analytic formulation are able to account for the red-shifting experimentally observed in plasmonic resonances. The calculation methods demonstrated here have the potential to greatly aid in the design of future detection devices that require specifically tuned plasmonic modes in the 2DEG of a HEMT, as well as giving new insights to aid in the development of more complete analytic theories.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0452828

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Investigation of plasmonic resonances in the two-dimensional electron gas of an InGaAs/InP high electron mobility transistor</title>
<author>
<name sortKey="Cleary, Justin W" uniqKey="Cleary J">Justin W. Cleary</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Scientific Corporation</s1>
<s2>Hollis, NH 03049</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Solid State Scientific Corporation</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peale, Robert E" uniqKey="Peale R">Robert E. Peale</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Central Florida</s1>
<s2>Orlando, FL 32816</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Orlando, FL 32816</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saxena, Himanshu" uniqKey="Saxena H">Himanshu Saxena</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Zyberwear, Inc.</s1>
<s2>Ocoee, FL 34761</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Ocoee, FL 34761</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Buchwald, Walter R" uniqKey="Buchwald W">Walter R. Buchwald</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Air Force Research Laboratory / Sensors Directorate, Hanscom Air Force Base</s1>
<s2>MA 01731</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0452828</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0452828 INIST</idno>
<idno type="RBID">Pascal:11-0452828</idno>
<idno type="wicri:Area/Main/Corpus">002745</idno>
<idno type="wicri:Area/Main/Repository">002B16</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Electron mobility</term>
<term>Gallium Arsenides</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Indium Phosphides</term>
<term>THz range</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Domaine fréquence THz</term>
<term>Mobilité électron</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Indium Phosphure</term>
<term>InGaAs</term>
<term>InP</term>
<term>As Ga In</term>
<term>In P</term>
<term>InGaAs/InP</term>
<term>0130C</term>
<term>0757</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The observation of THz regime transmission resonances in an InGaAs/InP high electron mobility transistor (HEMT) can be attributed to excitation of plasmons in its two-dimensional electron gas (2DEG). Properties of grating-based, gate-voltage tunable resonances are shown to be adequately modeled using commercial finite element method (FEM) software when the HEMT layer structure, gate geometry and sheet charge concentration are taken into account. The FEM results are shown to produce results consistent with standard analytical theories in the 10-100 cm
<sup>-1</sup>
wavenumber range. An original analytic formula presented here describes how the plasmonic resonance may change in the presence of a virtual gate, or region of relatively high free charge carriers that lies in the HEMT between the physical grating gate and the 2DEG. The virtual gate and corresponding analytic formulation are able to account for the red-shifting experimentally observed in plasmonic resonances. The calculation methods demonstrated here have the potential to greatly aid in the design of future detection devices that require specifically tuned plasmonic modes in the 2DEG of a HEMT, as well as giving new insights to aid in the development of more complete analytic theories.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>8023</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Investigation of plasmonic resonances in the two-dimensional electron gas of an InGaAs/InP high electron mobility transistor</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Terahertz physics, devices, and systems V : advanced applications in industry and defense</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CLEARY (Justin W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PEALE (Robert E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SAXENA (Himanshu)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BUCHWALD (Walter R.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ANWAR (Mehdi)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DHAR (Nibir K.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>CROWE (Thomas W.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Solid State Scientific Corporation</s1>
<s2>Hollis, NH 03049</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, University of Central Florida</s1>
<s2>Orlando, FL 32816</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Zyberwear, Inc.</s1>
<s2>Ocoee, FL 34761</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Air Force Research Laboratory / Sensors Directorate, Hanscom Air Force Base</s1>
<s2>MA 01731</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>80230X.1-80230X.9</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8597-7</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174749000260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>9 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0452828</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The observation of THz regime transmission resonances in an InGaAs/InP high electron mobility transistor (HEMT) can be attributed to excitation of plasmons in its two-dimensional electron gas (2DEG). Properties of grating-based, gate-voltage tunable resonances are shown to be adequately modeled using commercial finite element method (FEM) software when the HEMT layer structure, gate geometry and sheet charge concentration are taken into account. The FEM results are shown to produce results consistent with standard analytical theories in the 10-100 cm
<sup>-1</sup>
wavenumber range. An original analytic formula presented here describes how the plasmonic resonance may change in the presence of a virtual gate, or region of relatively high free charge carriers that lies in the HEMT between the physical grating gate and the 2DEG. The virtual gate and corresponding analytic formulation are able to account for the red-shifting experimentally observed in plasmonic resonances. The calculation methods demonstrated here have the potential to greatly aid in the design of future detection devices that require specifically tuned plasmonic modes in the 2DEG of a HEMT, as well as giving new insights to aid in the development of more complete analytic theories.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G57</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>37</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>THz range</s0>
<s5>37</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>41</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>41</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>53</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>54</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>54</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>78</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>InGaAs/InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>0757</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fN21>
<s1>311</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Terahertz physics, devices, and systems. Conference</s1>
<s2>05</s2>
<s3>Orlando FL USA</s3>
<s4>2011-04-25</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002B16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0452828
   |texte=   Investigation of plasmonic resonances in the two-dimensional electron gas of an InGaAs/InP high electron mobility transistor
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024